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Abstract--Stability analysis of two-phase flow in heated channels with double-humped axial heat flux 
variation, relevant to boiling water nuclear reactors, has been carried out. Single-phase and two-phase 
flow equations are linearized about the steady-state solution, and the stability of the fixed points is studied 
in frequency domain. Effects of symmetric and asymmetric double-humped axial heat flux variation on 
stability has been determined. Results are presented as stability boundaries in parameter space and as 
bifurcation diagrams. It is found that whether a channel with single-humped heat flux variation becomes 
more or less stable as the heat flux is replaced by an equivalent double-humped profile, actually depends 
upon other system parameters, such as the channel inlet subcooling. For example, for low inlet subcooling, 
a channel with symmetric double-humpexi heat flux variation is less stable than another channel with 
single-humped heat flux variation (same total heat flux), whereas, the trend is reversed for high inlet 
subcooling. 

Key Words: two-phase flow, parallel channel flow, density-wave oscillations, stability, double-humped 
axial heat flux 

I N T R O D U C T I O N  

Sustained flow oscillations occur in heated two-phase flow systems, such as heat exchangers, 
cryogenic equipment, chemical plants, boiling water nuclear reactors (BWR), etc. Associated 
vibrations and thermal fatigue can be very detrimental to the safe operation of  these equipment. 
Such instabilities are characterized by a delayed pressure drop response in the two-phase region 
to any variation at the system inlet. Although the oscillation mechanism in boiling water nuclear 
reactors is even more complex due to additional feedback between the two-phase thermal 
hydraulics and neutron kinetics--via void fraction, neutron thermalization and heat generation--  
the fundamental cause of  instability is still the characteristic single- and two-phase delayed pressure 
drop in the heated channel. These instabilities have been studied extensively in experimental set 
ups, and analyzed using analytical and numerical techniques over the last three decades (Stenning 
& Veziro~lu 1965; Bour6 et al. 1973; Saha et al. 1976; Bour6 1978; Onal 1981; Lorenzini 1981; 
Achard et al. 1985; Rizwan-uddin &Dorning  1986, 1987, 1988; Clause et al. 1989; Xiao et al. 1993). 
Analysis of density-wave oscillations in complex systems by numerical simulation of space and 
time-dependent thermal hydraulics (or neutron kinetics coupled thermal hydraulics, in case of  
BWRs) is time consuming and computationally very expensive. Moreover, effects of  various design 
and operating parameters on stability are relatively difficult to evaluate numerically. Hence, 
frequency domain linear and if possible, nonlinear analyses--even if carried out for special simpler 
cases--are extremely valuable. Results of such analyses show the effects of design and operating 
parameters on stability, and also help in efficient and systematic 'combing' of the parameter space 
when more detailed and time consuming numerical codes must be used. 

Frequency domain stability analyses of heated channels with two-phase flow have so far been 
restricted to channels with either axially uniform heat fluxes (Stenning & Veziro~lu 1965; Saha et al. 
1976; Achard et al. 1985; Rizwan-uddin &Dorn ing  1986), or in case of  axially varying heat flux, 
to channels with heat flux with a single-hump, such as represented by q " ( z ) =  q~ sin(a + bz)  
(Rizwan-uddin & Dorning 1987). Though the single-humped heat flux profile is realistic for 
many cases, various other heat flux profiles, especially double-humped axial heat flux, may result 
in engineering equipment. Boiling water nuclear reactors, due to their characteristic feedback 
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mechanism among void fraction, neutron thermalization and heat generation, coupled with long 
term depletion effects, are specially likely to have double-humped axial heat flux shapes (Valtonen 
1989). Moreover, flow and flux oscillation problems experienced by some BWRs have brought 
increased attention to their stability characteristics (Sandoz & Chen 1983; Diederich 1988; Bergdahl 
et  al. 1989; Araya et  al. 1991). In fact, data from the plant recorder from one such incident shows 
that at the time oscillations started at LaSalle-2 (Diederich 1988), the axial power profile in the 
reactor core was actually asymmetric (bottom peaked) and double-humped (Wulff et  al. 1991). It 
is later shown in this paper that analysis of the stability characteristics of a channel with realistic 
double-humped axial heat flux variation, as a uniformly heated channel or as a channel with a single 
hump in axial heat flux, may lead to non-conservative conclusions. Hence, results of previous 
studies, carried out for uniformly heated channels and for heated channels with a single hump, 
cannot be used to analyze heated channels with double-humped axial heat flux profiles, indicating 
the need for detailed stability analysis of the latter and the need to study the parametric effects 
on their stability. 

In this work, to study the stability characteristics of two-phase flow heated channels with 
double-humped heat flux profiles, frequency domain analysis has been carried out using the 
homogeneous equilibrium model to represent the two-phase flow (Lorenzini 1981; Achard et  al. 

1985; Clause et  al. 1989; Frutera 1986). [The effect of using the drift flux model on the stability 
characteristics of uniformly heated channels has already been studied (Rizwan-uddin & Dorning 
1986), and it is realized that though the drift flux model is important, the salient features of the 
stability characteristics of heated channels with two humps in heat flux profile can be studied using 
the homogeneous equilibrium model (Frutera 1986).] 

We start with the sets of partial differential equations (PDEs) for the single-phase and two-phase 
regions of the heated channel. After tranforming the two sets of PDEs to dimensionless variables, 
the steady-state solutions or the fixed points of the system are first calculated. Next, the equations 
are linearized about the fixed points and the set of resulting linear PDEs is solved to determine 
the characteristic equation. System stability is then determined in parameter space by the roots of 
the characteristic equation. 

MODEL 

Figure 1 schematically shows a heated channel of length L* with smoothly varying axial heat 
flux profile given by q " * ( z )  - q ~ * f ( z ) .  [(*)s represent a dimensional quantity and will be dropped 
once these quantities are made dimensionless.] The flow is due to an externally imposed pressure 
drop AP*, and the resulting inlet velocity (a dependent variable) is v * ( t * ) .  Liquid is subcooled 
at the inlet and the inlet temperature T* (or enthalpy h*) is also specified. 
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Figure 1. Schematic diagram of a heated channel with two-phase flow. Heat flux is given by 
q"(z) = q'~f(z). Channel length is L, inlet temperature T i, inlet velocity vi(t ), and the flow is due to an 

externally imposed pressure drop APe~. 
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The heated channel is divided into single-phase region and two-phase region. Axial location 
where boiling starts--boundary between single-phase and two phase regions--is called the boiling 
boundary and is denoted by 2 *(t*). Assuming incompressible liquid phase, the velocity throughout 
the single-phase region is equal to the inlet velocity. Hence, mass, momentum and energy 
conservation equations in the single-phase region are (0 < z* < 2*(t*)) 

p*(z* ,  t*) = p* = constant 

v*(z*,  t*) = v*(t*)  [1] 

c3P~'¢ dv*(t*) ,f~, (v*(t*)) 2 
Oz* = p* dt  ''------i-- + PL ~ + p ' g *  [2] 

dh*(z*, t*) t*) 
c~t* q- v*( t*)  ah*(;z* . = q'o'*f(z) [3] 

where subscript i is used to denote quantities at the channel inlet, and subscripts l~b and 2~b 
represent single-phase and two-phase flow quantities. Note that the boiling boundary 2*(t*) is the 
axial location at which enthalpy h*(z*, t*) is equal to the saturation enthalpy h*t 

h*(z* = 2*(t*), t*) = h* t. [4] 

The homogeneous equilibrium model for the two-phase flow is characterized by mixture velocity 
(or volumetric flux)j*(z*, t*), and mixture density p*(z* ,  t*). The equations for j*, p* and 
two-phase region pressure drop AP*~ are (Zuber & Findley 1965; Zuber & Staub 1967) 

caj*(z *, t*) r ~ A p *  
- -  f ( z ) ,  [5] 

where 

c3p*(z*, t*) 
dt* 

c~z* p ' p *  " 

+j*(z*,  t*) ap* - p F * f ( z ) A p . p . ( z .  ' Oz* = t*) [6] 

p . ( ~ j *  . .  dj*~ = dP*¢~ f *  p ~ j . 2 _ g . p .  [7] 
m ~ - ~ + J  ~-~--~/ dz* 2D* 

~ l t , ,l: , 

F * -  ~o 
G = Ah*G A * [8] 

and void fraction and mixture density are related by 

E*(z*, t* )=  (1 O*(Z*'t*)-'~ Oe , 
p* ) Ap* [9] 

where ~* is the heated perimeter, A* is the flow area and, p*(z* ,  t*) and j*(z*, t*) are mixture 
density and mixture velocity, respectively. Pressure drops at the inlet and exit of the heated channel 
are given by 

APi* (t*) = kip*vi*2(t *) [10] 

AP*(t*) = kop*(z* = L *, t*)j*2(z * = L *, t*) [11] 

where ki and ke are the inlet and exit pressure drop coefficients, respectively. 
Using the dimensionless variables and parameters given in appendix A (Rizwan-uddin & 

Doming 1986), the above set of equations is made dimensionless. The resulting equations for the 
single-phase region (0 < z < 2(t)) are 

pro(Z, t) = pL (Z, t) = 1, 

j(Z, t) = VL (Z, t) = Vi(Z, t) = Vi(t) 

dh(z,t) dh(z,t) (1N_~PNp)f + Vi(t ) ~ = Nr~h (Z) 

[12] 

[13] 
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0Pie dvi(t) 
- -  + Ni, v~(t) + Fr- '  [14] 

Oz dt 

Similarly, the dimensionless equations for the two-phase region (2(0 < z < 1) are, 

Oj(z, t) 
Oz = Nwh f ( z ) ,  [15] 

and 

0pm(Z, t) 0pm(Z , t) Ot +j(z, t) 0------~ = --Nr~hPm(Z' t)f(z), 

OP2¢=pm(Z ' t ) (~+J(z ' t )~  +Fr-'+Nf2j2(z't) ) O z  

[161 

[171 

E(z, t) = (1 - pm(2, t))N r. [18] 

Single-phase and two-phase region momentum equations when integrated over their respective 
region lengths yield, 

(dvi(t)dt ) API4,(1) = \ +Nf ,  v~( t )+Fr- '  2(0, [191 

l +jOj(z,  t) 
AP2¢(t) = t) Oz + Fr- l  + Nf2j2(z, t) dz. [20] 

Dimensionless pressure drop at the channel inlet and exit are 

APi(t) = kivZ(t) [21] 

APe(t) = kepm(Z = 1, t)j2(z = 1, t). [22] 

The dimensionless parameter 'phase change number', N~h, is proportional to the amount of heat 
supplied to the channel. In order to compare stability characteristics of channels with different axial 
heat flux shapes, it will be necessary to compare them at the same total (heat) energy supplied. 
Hence, a 'total phase change number' Npch,tot, is defined as 

fo' Np~h.tot = Nr~h f ( z )  dz. [23] 

Also note that when the heat flux profilef(z) is taken as one, the model developed above reduces 
to that of a heated channel with uniform axial heat flux along the channel length. This special case 
( f (z )  = 1) has already been studied (Achard et al. 1985; Rizwan-uddin & Doming 1986), and the 
results were found to agree quite well with the experimental data of Saha et aL (1976). 

STEADY-STATE ANALYSIS 

Solution of the time-independent problem is obtained by assuming all dependent variables to 
be independent of time. The energy equation in the single-phase region yields an expression for 
enthalpy/7(z) which results in a transcendental expression for the (steady-state) position of the 
boiling boundary ~[, 

g(~)--g(O) = vNsub 
Npch [24] 

where 

l "  
g (z) = i f ( z )  dz, 

is the steady-state inlet velocity, and the steady-state quantities are represented by an 'over tilde' 
(~). Note that the subscript i from the steady-state inlet velocity has been dropped. Single-phase 
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region pressure drop becomes 

7~p,¢, -_ (Nt~ ~2 + rr - I  )'2. [251 

In the two-phase region, volumetric flux](z), mixture density t~m, and pressure drop AP2~ are given 
by 

](z) = ~ + N~h[g(z) --g(~.)] [26] 

jSm (z) =](z) [27] 

AP2, = tim(Z) (z)--~z +N/2]2 ( z )+Fr- '  dz. [281 

The steady-state concentrated pressure drops at the channel inlet and exit are as given by [21] and 
[22]. The equation for the total pressure drop in the channel, which is equal to the externally 
imposed pressure drop APex, is 

A-Ptot = AP~ + APe +/~Pl~  + '~P2~ = APex. 

For given geometry, inlet temperature, heat flux and externally imposed pressure drop, the last 
equation is used to determine the steady-state inlet velocity tZ 

STABILITY ANALYSIS 

The vector of dependent variables is 

y =- [h(z, t), 2(t),j(z,  t), pro(z, t), API~(/), AP2~(t), APi(/), APe(t)] r. 

We linearize the set of equations about the steady-state solution found in the previous section. 
Keeping only the linear terms yields the following set of differential and algebraic equations, 

06h(z, t) 06h(z, t) 
~- ~ + 6v(t) ~ = 0 [29] 

Ot Oz 

f(-2)62(t) + v66h(~2, t) = 0 [30] 

6j(t) - 6v(t) + Npchf(2)f2(t) = 0 [31] 

O6¢m(Z'ot t) +](z) O6dPm(Z'oz t) + 6j(t) dq~m(z)d____~ = 0 [32] 

6pm(Z , t) 
~¢m(Z,t) - - = 0  [33] 

Pm(Z) 
6APi(t) - 2kiffv(t)  = 0 [34] 

gAPe(t) - ke{2~m(Z = 1)](z = 1)6j(z = 1, t) +]2(z = 1)6pm(Z = 1, t)} = 0 [35] 

day(t) 2Nt,6]av(t) - (Nr, f 2 + Fr-t)aA(t) = 0 [36] 6API~( t ) -  ~ dt 

6AP2~,(t) - ~m(z)L"(6j(z, t)) dz - St (z)fpm(Z, t) dz + SI (~.)62(t) = 0 [37] 

where the following definitions have been used 

tkm(Z, t) = In[pro(z, t)] [38] 

(O O + d ] ( z ) +  2Ns2j(z))y [39] Z ' ( y )  ~- ~ +](z) ~z dz 

dj(z) 
S, (z) ~ ] ( z ) ~ - z  + N/2j2(z) + Fr-  i. [40] 

The set of equations linearized about the fixed point (or steady-state) obtained above is solved 
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below to obtain one equation in terms of  6v(t). The stability of  the steady-state solution is then 
analyzed using the linear equation in 6v(t). 

The single-phase energy equation, [29], when integrated along the characteristics using constant 
inlet enthalpy boundary condition, yields  f?(z ) 

6h(z, t) = - - ~  6v t - -~ + ,i f (g~) dq, [41] 

and when evaluated at z = )[, it becomes 

1 f0'° 6h(~t, t) = - ~  6v(t - v0 + ~)f(O~) d~ [42] 

where v0 -  ~./g. Expressions for perturbation in boiling boundary 6~.(t) and volumetric flux 6j(t) 
can also be written in terms of  6v(t) 

62(0  - 1 ~ 6h(2, t) [43] 
v~f(2) 

and 

6j(t) = 6v (t) -- Npch f(2)62 (t). [441 

Substituting the expression for 6j(z, t) into [32] for 6~bm, and solving the resulting linear PDE along 
its characteristics 

dt dz d6~b m 
1 - j ( z )  - d~m [451 

6j(t) 

we obtain 

6pro(Z,  t )  = 

where 

N p ¢ ~ ( 2 ) 6 2 ( t _ ( P , ( z , - P , ( ' 2 ) ) )  - ~ - - [ ~  | Npch ~- ' f ( z '  ) ~.F _ ( P , ( z ) - P , ( z ' ) l l d z ,  
No ch -I- t"m d ". tl~'" 'J OJl-t \ No ch /_1 

[46] 

Pj (z) = N~h ). [47] 

For constant external pressure drop, the sum of all individual perturbations in internal pressure 
drop must be equal to zero, i.e. 

6AP~(t) + 6APe(t ) + 6AP~¢(t) + 6Ae2¢(t) = 0 [48] 

Substituting the expressions from [34-37] into [48] yields 

dbv(t) 
dt + 2~(k~ + ~2Nt~)6v(t ) - {~Npchf(~.) + ~2(Nj2 - N~,)}62(t)+ke](Z = 1){2~m(Z = l)bj(t) 

+ l 
+](z  = l)6pm(Z = 1, t)} ~m(z)Lm(6j(z, t)) dz + gl (z)6pm(Z, t) dz - Lt(6v(t)) = 0 [49] 

where 62(0,  6j(z, t), 6pro(z, t), SI (z), and L m are given by [43], [441, [46], [401 and [39], respectively. 
For given heat flux shapef(z) ,  [49], which is a linear equation in 6v(t), can be used to study the 
stability of the fixed points. The solution of [49] using the Laplace transform, can be written in 
the form 

-~ (S) = ff(S ) 
Qr(s ) [50] 

where the superscript f signifies the axial heat flux shape. The stability of fixed points (or 
steady-state solutions) is determined by the zeros of  QY(s). The function Qt(s) also can be obtained 
simply by assuming an explicit solution for 6v(t) of the form 

fly(t) = e ~'. 
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First, expressions for 62(0, 6j(t), and ~pm(Z, t) are simplified using the explicit expression for 6v(t). 
These simplified expressions are then substituted into [49], which yields the characteristic equation 
in the form 

Qf(s) = O. 

Roots of the characteristic equation for given set of parameter values, determine the stability of 
fixed points. 

RESULTS AND DISCUSSION 

The analysis so far has been carried out for a general, smooth axial heat flux shapef(z). Now, 
to study the effects of two humps in the axial heat flux on the stability characteristics of the 
two-phase flow heated channel, a heat flux shape f ( z )  of the form 

f ( z )  = sin(a + bz) + • sin(a + 3bz) [51] 

is used, where a, b and ~ are constants. These constants allow very wide range of axial heat flux 
shapes--including those double-humped heat flux shapes that occur in operating BWRs--to be 
simulated and studied. [To compare the results with uniformly heated channels, we take b = • = 0 
and a = n/2.] Though for certain ~ ~ 0, this choice off(z)  yields, as desired, a double-humped heat 
flux profile, it also makes it necessary that few integrals in the characteristic equation be evaluated 
numerically. In fact, even the position of the boiling boundary at steady-state ~, must be determined 
numerically by solving a transcendental equation, [24]. 

Results of the stability analysis are presented as stability boundaries in parameter space and in 
the form of a bifurcation diagram. Regions of parameter space where at least one root of the 
characteristic equation has positive real part are 'unstable', and regions where all roots of the 
characteristic equation are strictly negative are 'stable'. The three operating parameters in this 
problem are subcooling number Nsub, total phase change number Npch,to t and externally imposed 
pressure drop APox. Setting values for the three operating parameters in the steady-state problem 
results in one or more possible solutions for inlet velocity and other dependent variables, called 
fixed point, which may or may not be stable. Hence, stability boundaries can be drawn in the 
three-dimensional parameter space Nsu b -Npch,to t --APex, (or any one of its two-dimensional 
projections) that separate stable regions in operating parameter space from unstable regions, i.e. 
regions in parameters space where the corresponding fixed points are stable from regions where 
the corresponding fixed points are unstable. Therefore, the projection of this stability boundary, 
for example on the Nsub- Npch,tot parameter space, should be for a constant externally imposed 
pressure drop APex and hence, each point on the projected boundary should correspond to a 
different fixed point (different steady-state inlet velocity). Practical considerations, on the other 
hand, require stability boundaries to be presented for constant flow rate. An early experimental 
study of two-phase instabilities (Saha et al. 1976) was carried out for constant inlet flow rate, and 
data was presented in N~u b - Npch space for constant inlet velocity rather than for constant external 
pressure drop. Hence, the results of stability analyses, to be able to compare with the experimental 
data, also have been traditionally evaluated and presented for constant inlet velocity case. This is 
achieved by allowing different values of APc~ along the stability boundary such that the 
combination of N~ub, Nvch.tot and APex always results in the same fixed inlet velocity for the entire 
stability boundary (Saha et al. 1976). Hence, the total pressure drop in the channel at each point 
on the stability boundaries, later presented in Npeh.to t - -  Nsu b space, is such that the combination of 
the three parameters results in a constant inlet velocity (~ = 1.0). In this paper the results of the 
stability analysis in ~ -Nsub space for fixed Npch,tot, obtained by allowing different values of AP0x 
along the stability boundary, also are presented. 

Figure 2 shows five different heat flux shapes. For heat flux shapes A, B, C and D, a = 0, b = •, 
and ~ = 0.0, 0.1, 0.2, 0.3, respectively. Figure 3 shows five stability boundaries in Npch.to t - - N s u  b 

space corresponding to the symmetric heat flux profiles shown in figure 2. A comparison of stability 
boundaries for the single-humped profile (case A) with flat heat flux profile (case E) shows that 
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Figure 2. Five symmetric heat flux profiles. For cases A, B, C and D, a = 0, b = ~ and :, = 0.0, 0. I, 0.2, 
0.3 [51]. For case E, f(z) = I. 

channel A is more stable than channel E for low values of  Ns,b and less stable for high values of  
Nsub. For  • = 0.1 (case B) the heat flux flattens near the channel center, and compared to case A 
(~ = 0.0), the channel becomes less stable for low Nsub and more stable for large N~,b values. The 
trend continues as a "dip"  develops in the heat flux profile near the center and the two peaks 
become distinct (cases C and D). 

Comparing cases A, D, and E, it is clear that the stability characteristics of  a channel with a 
symmetric double-humped heat flux profile are more similar to the channel with uniform heat flux 
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Figure 3. $tabifity boundaries that divide the parameter space into stable and unstable regions in 
N~.to t -N,u ~ space for symmetric heat flux profiles shown in figure 2. 
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Figure 4. Stability boundaries in ~ - Nsu b space for symmetric heat flux profiles shown in figure 2. 

than to a channel with a single hump. This effect is easily explained by the fact that for same total 
heat flux, double-humped heat flux profile is relatively "flatter" near the center and hence closer 
to the flat heat flux profile than the single-humped profile. An interesting feature to be noticed is 
that stability boundaries for cases A, B, C and D all pass through a common point, X. The point 
corresponds to values of Nsub and N~h,tot that result in a boiling boundary at the center of the heated 
channel. Boiling boundary is in the lower (upper) half of the channel for all points in N~h,,ot--Nsub 
parameter space below (above) the straight line that passes through the orion and the point X. 
It is clear that whether the channel is more or less stable due to a second hump depends upon the 
location of the boiling boundary. The second hump, which makes the flux profile relatively flatter, 
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Figure 5. Asymmetric  heat flux profiles. For cases A, B, C and D, a = 0.37, b = 2.4 and ~, = 0.0, 0.1, 0.2, 
0.3 [51]. For case E, f ( z )  = 1. 
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Figure 6. Stability boundaries that divide the parameter space into stable and unstable regions in 
N~h,tot- Nsub space for asymmetric heat flux profiles shown in figure 5. 

makes a channel less stable (compared to a single-humped channel) if the boiling boundary  is in 
the lower half  o f  the channel,  and more  stable if the boiling boundary  is in the upper  half  o f  the 
channel. This is physically understandable since the effect o f  the second hump on the boiling- 
boundary  is opposite for the two cases. The boiling boundary  moves down, hence increasing the 
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Figure 7. Stability boundaries in •-  N, ub space for asymmetric heat flux profiles shown in figure 5. 
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length of the two-phase region, due to the second hump if it (the boiling boundary) is in the lower 
half of the channel. Whereas, it moves up (decreasing the length of the two-phase region) if the 
boiling boundary for the single-humped case is in the upper half of the heated channel. Results 
of the stability analysis are presented in f-Ns,b plane in figure 4. Here again, as expected, the stable 
region for low Ns,~ increases as the second hump appears in the axial heat flux distribution. 

To analyze more realistic axial heat flux profiles that are found in practical engineering 
equipment like BWRs, the stability of two-phase flow heated channels with two asymmetric peaks 
in axial heat flux has also been studied. Figure 5 shows the heat flux shapes for a = 0.37, b = 2.4, 
and ~ = 0.0, 0.1, 0.2 and 0.3. The general trends for the stability characteristics of the asymmetric 
axial heat flux profile, as shown in figures 6 and 7, are the same as found in the symmetric heat 
flux variation case. Compared with the symmetric heat flux profile, in this asymmetric case, the 
region of parameter space where the channel becomes less stable due to the appearance of a second 
hump is significantly larger than the region where the second hump makes the channel more stable. 

Results, both for the symmetric and asymmetric, double-humped axial heat flux variation cases 
presented above, clearly show that a channel with double-humped heat flux variation can be 
significantly more unstable when compared with another channel with same total heat supplied 
(same Npch,tot) but uniform heat flux or one with single-humped heat flux variation. For example, 
comparison of stability characteristics of channels D (a very realistic bottom-peaked, double- 
humped axial heat flux), A (single-humped symmetric axial heat flux) and E (uniform heat flux) 
shown in figure 5 shows that channel D is less stable than channel A for almost the entire practically 
relevant region of the parameter space (Ns,b ~ 8), whereas channel D is less stable than channel 
E for 0.5 ~ Ns,b ~ 8 (see figure 6). Obviously any application of stability analyses developed for 
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uniformly heated channels or those developed for channels with single-humped axial flux variation, 
to channels with realistic double-humped axial heat flux shapes can lead to very non-conservative 
results. 

Results in the form of  a bifurcation diagram are presented in APex-g plane, which, for all other 
parameters fixed, shows the characteristic inlet velocity dependence and its stability on externally 
imposed pressure drop. Figures 8 and 9 show the characteristic curves for the heat flux shapes 
shown in figures 2 and 5, respectively. [Although there is a unique characteristic curve for each 
of the flux shapes in figures 2 and 5, the difference between these curves is relatively small and when 
drawn on the same scale they form a single 'thick' curve. Hence, to keep the figures uncluttered 
wc only have drawn one characteristic curve in figures 8 and 9.] As is well known, the middle branch 
of the characteristic curve is unstable due to Ledinegg instability. The lower branch of  the S-shaped 
curve is unstable due to oscillatory instabilities for values of the bifurcation parameter, external 
pressure drop, less than a critical value Aeex,cri t . It has been shown for uniformly heated channels 
that this instability is a result of  supercritical Hopf  bifurcation (Achard et al. 1985; Rizwan-uddin 
&Dorn ing  1986) and hence, stable limit cycle solutions exist in a finite range of external (or total) 
pressure drop values less than APex,cnt (Rizwan-uddin 1987). 

The effect of the second hump on the bifurcation diagram for the same parameter values can 
be different for the symmetric and asymmetric axial heat flux cases. Shown in figures 8 and 9 are 
the values of the bifurcation parameter APex,cnt for different heat flux shapes for inlet subcooling 
Nsob = 4.76 and N~h.tot = 7. The channel becomes unstable for external pressure drop less than 
APex,ont. For parameter values used here, bifurcation occurs at lower values of  the bifurcation 
parameter APex, i.e. APe~,cnt decreases as the single-humped heat flux profile (case A) is replaced 
by a symmetric double-humped heat flux profile (case D). See figure 8. For the same parameter 
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values, the trend is opposite for the asymmetric double-humped axial heat flux profile. In this case, 
bifurcation occurs at higher values of the bifurcation parameter for double-humped heat flux 
shapes (case D) than for the single-humped case (case A). Although the parameter values for figures 
3 and 6 are different from those used in figure 8 (and 9), the same trend can actually be seen also 
in figures 3 and 6. For Nsu b = 5 and Nr~h,tot = 9, figure 3 shows that the channel with symmetric 
doubleThumped heat flux profile (case D) is more stable than the single-humped profile case (case 
A). For the same parameter values, figure 6 shows that the channel with asymmetric double- 
humped axial flux distribution is less stable (case D) than the channel with single-humped heat flux 
profile (case A). 

Also to be remembered is the fact that the stability characteristics of heated channels with 
two-phase flow described above are actually a function both of the heat flux shape and the 
parameter values. For example, for Nsub = 1.0 (and Npch, to  t = 8), even the channel with symmetric 
double-humped heat flux shape, similar to the asymmetric case, is less stable (case D) than the 
channel with a single-humped heat flux profile (case A). See figure 3. In other words, bifurcation 
even for the symmetric double-humped heat flux shape, occurs at higher total pressure drop than 
the critical value for the single-humped case, if the subcooling number Nsub is small. 

CONCLUSIONS 

Stability analysis of two-phase flow heated channels with double-humped axially varying heat 
flux has been carried out. The effect of different axial heat flux shapes on channel stability is found 
to be different for channels operating in different regions of the parameter space. For example, as 
the heat flux shape is changed from a single-humped profile to a symmetric double-humped profile, 
a channel with low inlet subcooling becomes less stable, while a channel with high inlet subcooling 
becomes more stable. 

Importance of the boiling boundary dynamics in the stability analysis of two-phase flow has once 
again been established. The channel becomes less stable by the introduction of a different axial heat 
flux profile if it results in increasing the two-phase region length, i.e. if the steady-state boiling 
boundary location moves down. The results presented here are useful in the analysis of realistic 
two-phase flow heated systems, such as the boiling water nuclear reactors, which have been found 
to have double-humped variations in their axial heat flux profile under certain operating conditions. 
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A P P E N D I X  A 

The Dimensionless Variables and Parameters 

The single- and two-phase region equations are made dimensionless using the dimensional 
channel length L *, liquid density p*, latent heat Ah*G, and an arbitrary characteristic velocity v 6*. 
The dimensionless variables and parameters that appear in these equations are defined as follows: 

• j *  v*  z *  
J = v--~o ' Vi = v---~o ' Z = L--*' 

2" t* =Pro* ,~=-~ t -L,/v~,  Pm p,, 
h* P* v~ 2 

hm - AhL*c' P - ~,, , ,2,  Fr - 
/ILC' 0 g ' L * '  

NR = P__~ p ~ 1 p*'  Nr= ' -~p  *' N p = I  N~' 

J~*~ L* f*~L* Ahi*Ap* 
N p  = 2 D *  ' N ~  = 2 D *  ' Nsub - -  ,-------~, 

AhLGPG 

q"*~*L*Ap* 
Npch = , , , 

A AhLGp~p*v* 


